Anest. intenziv. Med. 2020;31(4):176-183 | DOI: 10.36290/aim.2020.032

Insulin resistance, hyperglycemia and protein catabolism in the critically ill: looking for keys of the locked doorReview Article

Bakalář B.1,2, Zajíček R.2, Duška F.1
1 Klinika anesteziologie a resuscitace 3. lékařské fakulty Univerzity Karlovy a Fakultní nemocnice Královské Vinohrady Praha
2 Klinika popáleninové medicíny 3. lékařské fakulty Univerzity Karlovy a Fakultní nemocnice Královské Vinohrady Praha

Insulin resistance is a uniform reaction in critically ill patients. Its accompanying phenomena are hyperglycemia and protein catabolism, which are generally associated with deleterious effects on the body. The efforts to influence insulin resistance have so far been ineffective in critically ill patients. The aim of this work is to give an overview of the current state of knowledge about the causes and consequences of insulin resistance in critically ill patients and describe the current possibilities of influencing catabolic processes.

Keywords: insulin resistance, hyperglycemia, critical illness, protein catabolism, metformin, illusory movements.

Received: June 17, 2020; Revised: July 26, 2020; Accepted: August 4, 2020; Prepublished online: August 18, 2020; Published: September 18, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bakalář B, Zajíček R, Duška F. Insulin resistance, hyperglycemia and protein catabolism in the critically ill: looking for keys of the locked door. Anest. intenziv. Med. 2020;31(4):176-183. doi: 10.36290/aim.2020.032.
Download citation

References

  1. Marik PE, Bellomo R. Stress hyperglycemia: an essential survival response! Crit Care 2013; 17: 305. Go to original source... Go to PubMed...
  2. Falciglia M, Frezberg RW, Almenoff PL, D'Alessio DA, Render ML. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit Care Med 2009; 37: 3001-3009. Go to original source... Go to PubMed...
  3. Bagshaw SM, Bellomo R, Jacka MJ, Egi M, Hart GK, George C, ANZICS CORE Management Committee. The impact of early hyperglycemia and blood glucose variability on outcome in critical illness. Crit Care 2009; 13: R91. Go to original source... Go to PubMed...
  4. Salim A, Hadjizacharia P, Dubose J, Brown C, Inaba K, Chan LS, et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg 2009; 75(1): 25-29. Go to original source... Go to PubMed...
  5. Baker EH, Janaway CH, Philips BJ, Brennan AL, Baines DL, Wood DM, et al. Hyperglycemia is associated with poor outcomes in patients admitted to hospital with acute exacerbations of chronic obstructive pulmonary disease. Thorax 2006; 61(4): 284-289. Go to original source... Go to PubMed...
  6. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283-1297. Go to original source... Go to PubMed...
  7. Chernow B, Rainey TG, Lake CR. Endogenous and exogenous catecholamines in critical care medicine. Crit Care Med 1982; 10: 409-416. Go to original source... Go to PubMed...
  8. Boonen E, Vervenne H, Meersseman P, Andrew R, Mortier L, Declercq PE, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013; 368(16): 1477-1488. Go to original source... Go to PubMed...
  9. Jernås M, Olsson B, Sjöholm K, Nellgård B, Carlsson LMS, Sjöström CD. Changes in adipose tissue gene expression and plasma levels of adipokines and acute-phase proteins in patients with critical illness. Metabolism 2009; 58(1): 102-108. Go to original source... Go to PubMed...
  10. Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, et al. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(10 Pt B): 2564-2573. Go to original source... Go to PubMed...
  11. Petersen MC, Vatner DF, Shulman GI. Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol. 2017; 13(10): 572-587. Go to original source... Go to PubMed...
  12. Yu YM, Tompkins RG, Ryan CM, Young VR. The metabolic basis of the increase in energy expenditure in severely burned patients. JPEN J Parenter Enteral Nutr. 1999; 23(3): 160-168. Go to original source... Go to PubMed...
  13. Bakalar B, Hyspler R, Pachl J, Zadak Z. Changes in cholesterol and its precursors during the first days after major trauma. Wien Klin Wochenschr. 2003; 115(21-22): 775-779. Go to original source... Go to PubMed...
  14. Porter C, Herndon DN, Børsheim E, Chao T, Reidy PT, Borack MS, et al. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults. Am J Physiol Endocrinol Metab. 2014; 307(5): E462-E467.  Go to original source... Go to PubMed...
  15. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med. 1987; 317(7): 403-408. Go to original source... Go to PubMed...
  16. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014; 510(7503): 92-101. Go to original source... Go to PubMed...
  17. Duvall MG, Levy BD. DHA- and EPA-derived resolvins, protectins, and maresins in airway inflammation. Eur J Pharmacol. 2015; 785: 144-155.  Go to original source... Go to PubMed...
  18. Singer M. Metabolic failure. Crit Care Med 2005; 33(12): S539-S542. Go to original source... Go to PubMed...
  19. Jeschke MG, Gauglitz GG, Kulp GA, Finnerty CC, Williams FN, Kraft R, et al. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One. 2011; 6(7): e21245. Go to original source... Go to PubMed...
  20. Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014; 220(2): T1-T23. Go to original source... Go to PubMed...
  21. Steinberg HO, Baron AD. Vascular function, insulin resistance and fatty acids. Diabetologia. 2002; 45(5): 623-634. Go to original source... Go to PubMed...
  22. Vrhovac I, Brejlak D, Sabolić I. Glucose transporters in the mammalian blood cells. Periodicum Biologorum. 2014; 116(2): 61-131.
  23. Vespa P, McArthur DL, Stein N, Huang S‑Ch, Shao W, Filippou M, et al. Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med. 2012; 40(6): 1923-1929. Go to original source... Go to PubMed...
  24. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237(3): E214-E223. Go to original source... Go to PubMed...
  25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-419. Go to original source... Go to PubMed...
  26. Baldini, N, Avnet, S. The Effects of Systemic and Local Acidosis on Insulin Resistance and Signaling. Int J Mol Sci 2018; 20(1): 126-141. Go to original source... Go to PubMed...
  27. Gual P, Le Marchand-Brustel Y, Tanti J. Positive and negative regulation of glucose uptake by hyperosmotic stress. Diabetes Metab. 2003; 29(6): 566-575. Go to original source... Go to PubMed...
  28. Sookoian S, Pirola CJ. Epigenetics of insulin resistance: an emerging field in translational medicine. Curr Diab Rep 2013; 13(2): 229-237. Go to original source... Go to PubMed...
  29. Svensson K, Handschin C. MicroRNAs emerge as modulators of NAD+-dependent energy metabolism in skeletal muscle. Diabetes 2014; 63(5): 1451-1453. Go to original source... Go to PubMed...
  30. Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017; 40(5): 257-262. Go to original source... Go to PubMed...
  31. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019; 38(1): 48-79. Go to original source... Go to PubMed...
  32. Thomas SJ, Morimoto K, Herndon DN, Ferrando AA, Wolfe RR, Klein GL, et al. The effect of prolonged euglycemic hyperinsulinemia on lean body mass after severe burn. Surgery. 2002; 132(2): 341-347. Go to original source... Go to PubMed...
  33. Assimacopoulos‑Jeannet F, Brichard S, Rencurel F, Cusin I, Jeanrenaud B. In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism. 1995; 44(2): 228-233. Go to original source... Go to PubMed...
  34. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000; 348(Pt 3): 607-614. Go to original source... Go to PubMed...
  35. Guigas B, Detaille D, Chauvin C, Batandier C, De Oliveira F, Fontaine E, et al. Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J. 2004; 382(Pt 3): 877-884. Go to original source... Go to PubMed...
  36. Ouyang J, Isnard S, Lin J, Fombuena B, Marette A, Routy B, et al. Metformin effect on gut microbiota: insights for HIV‑related inflammation. AIDS Res Ther. 2020; 17(1): 10. Go to original source... Go to PubMed...
  37. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism. 2016; 65(2): 20-29. Go to original source... Go to PubMed...
  38. Gore DC, Herndon DN, Wolfe RR. Comparison of peripheral metabolic effects of insulin and metformin following severe burn injury. J Trauma. 2005; 59(2): 316-323.  Go to original source... Go to PubMed...
  39. Panahi Y, Mojtahedzadeh M, Zekeri N, Beiraghdar F, Khajavi MR, Ahmadi A. Metformin treatment in hyperglycemic critically ill patients: another challenge on the control of adverse outcomes. Iran J Pharm Res. 2011; 10(4): 913-919.
  40. Jeschke MG, Abdullahi A, Burnett M, Rehou S, Stanojcic M. Glucose Control in Severely Burned Patients Using Metformin: An Interim Safety and Efficacy Analysis of a Phase II Randomized Controlled Trial. Ann Surg. 2016; 264(3): 518-527. Go to original source... Go to PubMed...
  41. Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int J Mol Sci. 2019; 20(20): 5055. Go to original source... Go to PubMed...
  42. Cree MG, Zwetsloot JJ, Herndon DN, Qian T, Morio B, Fram R, et al. Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate. Ann Surg. 2007; 245(2): 214-221. Go to original source... Go to PubMed...
  43. Cree MG, Newcomer BR, Herndon DN, Qian T, Sun D, Morio B, et al. PPAR‑alpha agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial. Nutr Metab (Lond). 2007; 4: 9. Go to original source... Go to PubMed...
  44. Takala J, Ruokonen E, Webster NR, Nielsen MS, Zandstra DF, Vundelinckx G, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med. 1999; 341(11): 785-792. Go to original source... Go to PubMed...
  45. Elijah IE, Branski LK, Finnerty CC, Herndon DN. The GH/IGF-1 system in critical illness. Best Pract Res Clin Endocrinol Metab. 2011; 25(5): 759-767. Go to original source... Go to PubMed...
  46. Duska F, Fric M, Waldauf P, Pažout J, Anděl M, Mokrejš P, et al. Frequent intravenous pulses of growth hormone together with glutamine supplementation in prolonged critical illness after multiple trauma: effects on nitrogen balance, insulin resistance, and substrate oxidation. Crit Care Med. 2008; 36(6): 1707-1713. Go to original source... Go to PubMed...
  47. Critical evaluation of the safety of recombinant human growth hormone administration: statement from the Growth Hormone Research Society. J Clin Endocrinol Metab. 2001; 86(5): 1868-1870. Go to original source...
  48. Froesch ER, Schmid C, Schwander J, Zapf J. Actions of insulin‑like growth factors. Annu Rev Physiol. 1985; 47: 443-467. Go to original source... Go to PubMed...
  49. Mesotten D, Van den Berghe G. Changes within the growth hormone/insulin‑like growth factor I/IGF binding protein axis during critical illness. Endocrinol Metab Clin North Am. 2006; 35(4): 793-805. Go to original source... Go to PubMed...
  50. Frysak Z, Schovanek J, Iacobone M, Karasek D. Insulin‑like Growth Factors in a clinical setting: Review of IGF‑I. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015; 159(3): 347-351. Go to original source...
  51. Herndon DN, Rodriguez NA, Diaz EC, Hegde S, Jennings K, Mlcak RP, et al. Long‑term propranolol use in severely burned pediatric patients: a randomized controlled study. Ann Surg. 2012; 256(3): 402-411. Go to original source... Go to PubMed...
  52. Manzano‑Nunez R, García‑Perdomo HA, Ferrada P, Ordoñez Delgado CA, Gomez DA, Foianini JE. Safety and effectiveness of propranolol in severely burned patients: systematic review and meta‑analysis. World J Emerg Surg. 2017; 12: 11. Go to original source... Go to PubMed...
  53. Bentley C, Hazeldine J, Greig C, Lord J, Foster M. Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient. Burns Trauma. 2019; 7: 26. Go to original source... Go to PubMed...
  54. Almoosa KF, Gupta A, Pedroza C, Watts NB. Low Testosterone Levels are Frequent in Patients with Acute Respiratory Failure and are Associated with Poor Outcomes. Endocr Pract. 2014; 20(10): 1057-1063. Go to original source... Go to PubMed...
  55. Ferrando AA, Sheffield‑Moore M, Wolf SE, Herndon DN, Wolfe RR. Testosterone administration in severe burns ameliorates muscle catabolism. Crit Care Med. 2001; 29(10): 1936-1942. Go to original source... Go to PubMed...
  56. Li H, Guo Y, Yang Z, Roy M, Guo Q. The efficacy and safety of oxandrolone treatment for patients with severe burns: A systematic review and meta‑analysis. Burns. 2016; 42(4): 717-727. Go to original source...
  57. Anstey M, Desai S, Torre L, Wibrow B, Seet J, Osnain E. Anabolic Steroid Use for Weight and Strength Gain in Critically Ill Patients: A Case Series and Review of the Literature. Case Rep Crit Care. 2018; 2018: 4545623. Go to original source... Go to PubMed...
  58. Fliers E, Bianco AC, Langouche L, Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 2015; 3(10): 816-825. Go to original source... Go to PubMed...
  59. Bloise FF, Oliveira TS, Cordeiro A, Ortiga‑Carvalho TM. Thyroid Hormones Play Role in Sarcopenia and Myopathies. Front Physiol. 2018; 9: 560. Go to original source... Go to PubMed...
  60. Burtin C, Clerckx B, Robbeets C, Patrick Ferdinande, Daniel Langer, Thierry Troosters, et al. Early exercise in critically ill patients enhances short‑term functional recovery. Crit Care Med. 2009; 37(9): 2499-2505. Go to original source... Go to PubMed...
  61. Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA. 2007; 297(16): 1772-1774. Go to original source... Go to PubMed...
  62. Truong AD, Fan E, Brower RG, Needham DM. Bench‑to‑bedside review: mobilizing patients in the intensive care unit--from pathophysiology to clinical trials. Crit Care. 2009; 13(4): 216. Go to original source... Go to PubMed...
  63. Herridge MS, Chu LM, Matte A, Tomlinson G, Chan L, Thomas C, et al. The RECOVER Program: Disability Risk Groups and 1-Year Outcome after 7 or More Days of Mechanical Ventilation. Am J Respir Crit Care Med. 2016; 194(7): 831-844. Go to original source... Go to PubMed...
  64. Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, et al. Acute outcomes and 1-year mortality of intensive care unit‑acquired weakness. A cohort study and propensity‑matched analysis. Am J Respir Crit Care Med. 2014; 190(4): 410-420. Go to original source...
  65. Ruhl AP, Huang M, Colantuoni E, Lord RK, Dinglas VD, Chong A, et al. Healthcare Resource Use and Costs in Long‑Term Survivors of Acute Respiratory Distress Syndrome: A 5-Year Longitudinal Cohort Study. Crit Care Med. 2017; 45(2): 196-204. Go to original source... Go to PubMed...
  66. Needham DM, Wang W, Desai SV, Mendez‑Tellez PA, Dennison CR, Sevransky J, et al. Intensive care unit exposures for long‑term outcomes research: development and description of exposures for 150 patients with acute lung injury. J Crit Care. 2007; 22(4): 275-284. Go to original source... Go to PubMed...
  67. Llano‑Diez M, Renaud G, Andersson M, Marrero HG, Cacciani N, Engquist H, et al. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading. Crit Care. 2012; 16(5): R209. Go to original source... Go to PubMed...
  68. Williams N, Flyn M. A review of the efficacy of neuromuscular electrical stimulation in critically ill patients. Physiother Theory Pract. 2014; 30(1): 6-11. Go to original source... Go to PubMed...
  69. Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med. 2007; 35(1): 139-145. Go to original source... Go to PubMed...
  70. Dantas CM, Silva PFS, Siqueira FHT, Pinto RMF, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012; 24(2): 173-178. Go to original source... Go to PubMed...
  71. Waldauf P, Jiroutková K, Krajčová A, Puthucheary Z, Duška F. Effects of Rehabilitation Interventions on Clinical Outcomes in Critically Ill Patients: Systematic Review and Meta‑Analysis of Randomized Controlled Trials [published online ahead of print, 2020 Apr 28]. Crit Care Med. 2020; 10.1097/CCM.0000000000004382. Go to original source... Go to PubMed...
  72. Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008; 34(7): 1188-1199. Go to original source... Go to PubMed...
  73. TECHNO CONCEPT. Vibramoov - Always in motion. Mane - France, 2018 [online]. Dostupné z: http://pdf.medicalexpo.com/pdf/techno-concept/vibramoov/77870-153443.html.
  74. Holubářová J, Pavlů D. Proprioceptivní neuromuskulární facilitace. 3. vydání. Praha: Univerzita Karlova, nakladatelství Karolinum, 2017.
  75. Roll R, Kavounoudias A, Albert F, R Legré, A Gay, B Fabre, et al. Illusory movements prevent cortical disruption caused by immobilization. NeuroImage. 2012; 62(1): 510-519. Go to original source... Go to PubMed...




Anesteziologie a intenzivní medicína

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.