Anest. intenziv. Med. 2013;24(4):250-263
Immune homeostasis (deregulation) in sepsis and septic shockIntensive Care Medicine - Original Paper
- 1 JIP, I. interní klinika FN v Plzni a LF v Plzni, Univerzita Karlova v Praze
- 2 Hematologicko-onkologické oddělení, Fakultní nemocnice v Plzni
Sepsis and septic shock represent an important medical and socio-economic burden worldwide. The double-phased concept of significant immune homeostasis impairment in sepsis has generally been accepted. In this theory, the initial phase is characterized by enormous activation of immune system followed by the compen-satory phase resulting in profound immunosuppression. However, this paradigm has recently been challenged and the concept of simultaneous pro-inflammatory, anti-inflammatory and adaptive immunity suppressing response occurring early in sepsis has been introduced. These immune alterations leading to the failure to combat relatively avirulent, nosocomial and opportune pathogens, and prolonged multiorgan dysfunction seem to be a major cause of increased morbidity and mortality in critically ill patients. This review briefly summarizes the current concept of sepsis-induced immune deregulation and discusses diagnostic tools and emerging immune-based therapeutic interventions.
Keywords: sepsis; immune response; immune deregulation; flow cytometry
Received: February 11, 2013; Accepted: May 15, 2013; Published: August 1, 2013 Show citation
References
- Martin, G. S., Mannino, D. M., Eaton, S. et al. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med., 2003, 348, p. 1546-1554.
Go to original source...
Go to PubMed...
- Annane, D., Bellissant, E., Cavaillon, J. M. Septic shock. Lancet, 2005, 365, p. 63-78.
Go to original source...
Go to PubMed...
- Riedemann, N. C., Guo, R. F., Ward, P. A. Novel strategies for the treatment of sepsis. Nat. Med., 2003, 9, p. 517-524.
Go to original source...
Go to PubMed...
- Boomer, J. S., To, K., Chang, K. C. et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA, 2011, 306, p. 2594-2605.
Go to original source...
Go to PubMed...
- Littman, D. R., Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell, 2010, 140, p. 845-858.
Go to original source...
Go to PubMed...
- Cinel, I., Opal, S. M. Molecular biology of inflammation and sepsis: a primer. Crit. Care Med., 2009, 37, p. 291-304.
Go to original source...
Go to PubMed...
- Netea, M. G., van der Meer, J. W. Immunodeficiency and genetic defects of pattern-recognition receptors. N. Engl. J. Med., 2011, 364, p. 60-70.
Go to original source...
Go to PubMed...
- Opal, S. M. New perspectives on immunomodulatory therapy for bacteraemia and sepsis. Int. J. Antimicrob. Agents, 2010, 36 Suppl 2, p. S70-S73.
Go to original source...
Go to PubMed...
- Larosa, S. P., Opal, S. M. Immune aspects of sepsis and hope for new therapeutics. Curr. Infect. Dis. Rep., 2012, 14, p. 474-483.
Go to original source...
Go to PubMed...
- Van der, P. T., Opal, S. M. Host-pathogen interactions in sepsis. Lancet Infect. Dis., 2008, 8, p. 32-43.
Go to original source...
Go to PubMed...
- Sursal, T., Stearns-Kurosawa, D. J., Itagaki, K. et al. Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates. Shock, 2013, 39, p. 55-62.
Go to original source...
Go to PubMed...
- Gentile, L. F., Cuenca, A. G., Efron, P. A. et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J. Trauma Acute. Care Surg., 2012, 72, p. 1491-1501.
Go to original source...
Go to PubMed...
- Monneret, G., Lepape, A., Voirin, N. et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensive Care Med., 2006, 32, p. 1175-1183.
Go to original source...
Go to PubMed...
- Xiao, W., Mindrinos, M. N., Seok, J. et al. A genomic storm in critically injured humans. J. Exp. Med., 2011, 208, p. 2581-2590.
Go to original source...
Go to PubMed...
- Calvano, S. E., Xiao, W., Richards, D. R. et al. A network-based analysis of systemic inflammation in humans. Nature, 2005, 437, p. 1032-1037.
Go to original source...
Go to PubMed...
- Prucha, M., Ruryk, A., Boriss, H. et al. Expression profiling: toward an application in sepsis. Shock, 2004, 22, p. 29-33.
Go to original source...
Go to PubMed...
- Johnson, S. B., Lissauer, M., Bochicchio, G. V. et al. Gene expression profiles differentiate between sterile SIRS and early sepsis. Ann. Surg., 2007, 245, p. 611-621.
Go to original source...
Go to PubMed...
- Tang, B. M., McLean, A. S., Dawes, I. W. et al. Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Crit. Care Med., 2009, 37, p. 882-888.
Go to original source...
Go to PubMed...
- Sprung, C. L., Sakr, Y., Vincent, J. L. et al. An evaluation of systemic inflammatory response syndrome signs in the Sepsis Occurrence in Acutely ill Patients (SOAP) study. Intensive Care Med., 2006, 32, p. 421-427.
Go to original source...
Go to PubMed...
- Hotchkiss, R. S., Karl, I. E. The pathophysiology and treatment of sepsis. N. Engl. J. Med., 2003, 348, p. 138-150.
Go to original source...
Go to PubMed...
- Gentile, L. F., Moldawer, L. L. DAMPs, PAMPs, and the Origins of SIRS in Bacterial Sepsis. Shock, 2013, 39, p. 113-114.
Go to original source...
Go to PubMed...
- Bauer, M., Reinhart, K. Molecular diagnostics of sepsis-where are we today? Int. J. Med. Microbiol., 2010, 300, p. 411-413.
Go to original source...
Go to PubMed...
- Wong, H. R. Clinical review: sepsis and septic shock - the potential of gene arrays. Crit Care, 2012, 16, p. 204.
Go to original source...
Go to PubMed...
- Karvunidis, T., Mares, J., Thongboonkerd, V. et al. Recent progress of proteomics in critical illness. Shock, 2009, 31, p. 545-552.
Go to original source...
Go to PubMed...
- Cohen, J. The immunopathogenesis of sepsis. Nature, 2002, 420, p. 885-891.
Go to original source...
Go to PubMed...
- Hotchkiss, R. S., Swanson, P. E., Freeman, B. D. et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med., 1999, 27, p. 1230-1251.
Go to original source...
Go to PubMed...
- Hotchkiss, R. S., Chang, K. C., Swanson, P. E. et al. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat. Immunol., 2000, 1, p. 496-501.
Go to original source...
Go to PubMed...
- Hotchkiss, R. S., Tinsley, K. W., Swanson, P. E. et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol., 2001, 166, p. 6952-6963.
Go to original source...
Go to PubMed...
- Hotchkiss, R. S., Tinsley, K. W., Swanson, P. E. et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol., 2002, 168, p. 2493-2500.
Go to original source...
Go to PubMed...
- Nolan, A., Kobayashi, H., Naveed, B. et al. Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS. One., 2009, 4, p. e6600.
Go to original source...
Go to PubMed...
- Hotchkiss, R. S., Opal, S. Immunotherapy for sepsis-a new approach against an ancient foe. N. Engl. J. Med., 2010, 363, p. 87-89.
Go to original source...
Go to PubMed...
- Guisset, O., Dilhuydy, M. S., Thiebaut, R. et al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med., 2007, 33, p. 148-152.
Go to original source...
Go to PubMed...
- Faivre, V., Lukaszewicz, A. C., Alves, A. et al. Accelerated in vitro differentiation of blood monocytes into dendritic cells in human sepsis. Clin. Exp. Immunol., 2007, 147, p. 426-439.
Go to original source...
Go to PubMed...
- Nathan, C., Ding, A. Nonresolving inflammation. Cell, 2010, 140, p. 871-882.
Go to original source...
Go to PubMed...
- Mantovani, A., Cassatella, M. A., Costantini, C. et al. Neutrophilsin the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol., 2011, 11, p. 519-531.
Go to original source...
Go to PubMed...
- Urban, C. F., Ermert, D., Schmid, M. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS. Pathog., 2009, 5, p. e1000639.
Go to original source...
Go to PubMed...
- Kovach, M. A., Standiford, T. J. The function of neutrophils in sepsis. Curr. Opin. Infect. Dis., 2012, 25, p. 321-327.
Go to original source...
Go to PubMed...
- Karvunidis, T., Chvojka, J., Lysak, D. et al. Septic shock and chemotherapy - induced cytopenia: effects on microcirculation. Intensive Care Med., 2012, 38, p. 1336-1344.
Go to original source...
Go to PubMed...
- Lipscomb, M. F., Masten, B. J. Dendritic cells: immune regulators in health and disease. Physiol Rev., 2002, 82, p. 97-130.
Go to original source...
Go to PubMed...
- Zitvogel, L. Dendritic and natural killer cells cooperate in the control/switch of innate immunity. J. Exp. Med., 2002, 195, p. F9-14.
Go to original source...
Go to PubMed...
- Pene, F., Mira, J. P., Chiche, J. D. Nobel Prize laureates pave the way for therapeutic advances in sepsis. Intensive Care Med., 2012, 38, p. 183-185.
Go to original source...
Go to PubMed...
- Patterson, S. Flexibility and cooperation among dendritic cells. Nat. Immunol., 2000, 1, p. 273-274.
Go to original source...
Go to PubMed...
- Grimaldi, D., Louis, S., Pene, F. et al. Profound and persistent decrease of circulating dendritic cells is associated with ICU-acquired infection in patients with septic shock. Intensive Care Med., 2011, 37, p. 1438-1446.
Go to original source...
Go to PubMed...
- Astiz, M., Saha, D., Lustbader, D. et al. Monocyte response to bacterial toxins, expression of cell surface receptors, and release of anti-inflammatory cytokines during sepsis. J. Lab Clin. Med., 1996, 128, p. 594-600.
Go to original source...
Go to PubMed...
- Manjuck, J., Saha, D. C., Astiz, M. et al. Decreased response to recall antigens is associated with depressed costimulatory receptor expression in septic critically ill patients. J. Lab. Clin. Med., 2000, 135, p. 153-160.
Go to original source...
Go to PubMed...
- Wolk, K., Docke, W. D., Von, B., V. et al. Impaired antigen presentation by human monocytes during endotoxin tolerance. Blood, 2000, 96, p. 218-223.
Go to original source...
- Fumeaux, T., Pugin, J. Is the measurement of monocytesHLA-DR expression useful in patients with sepsis? Intensive Care Med., 2006, 32, p. 1106-1108.
Go to original source...
Go to PubMed...
- Tschoeke, S. K., Moldawer, L. L. Human leukocyte antigen expression in sepsis: what have we learned? Crit. Care Med., 2005, 33, p. 236-237.
Go to original source...
Go to PubMed...
- Trimmel, H., Luschin, U., Kohrer, K. et al. Clinical outcome of critically ill patients cannot be defined by cutoff values of monocyte human leukocyte antigen-DR expression. Shock, 2012, 37, p. 140-144.
Go to original source...
Go to PubMed...
- Okazaki, T., Honjo, T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol., 2006, 27, p. 195-201.
Go to original source...
Go to PubMed...
- Keir, M. E., Butte, M. J., Freeman, G. J. et al. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26, p. 677-704.
Go to original source...
Go to PubMed...
- Huang, X., Venet, F., Wang, Y. L. et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl. Acad. Sci. U. S. A, 2009, 106, p. 6303-6308.
Go to original source...
Go to PubMed...
- Holub, M., Kluckova, Z., Beneda, B. et al. Changes in lymphocyte subpopulations and CD3+/DR+ expression in sepsis. Clin. Microbiol. Infect., 2000, 6, p. 657-660.
Go to original source...
Go to PubMed...
- Holub, M., Kluckova, Z., Helcl, M. et al. Lymphocyte subset numbers depend on the bacterial origin of sepsis. Clin. Microbiol. Infect., 2003, 9, p. 202-211.
Go to original source...
Go to PubMed...
- Ochoa, J. B., Makarenkova, V. T lymphocytes. Crit. Care Med., 2005, 33, p. S510-S513.
Go to original source...
Go to PubMed...
- Curfs, J. H., Meis, J. F., Hoogkamp-Korstanje, J. A. A primer on cytokines: sources, receptors, effects, and inducers. Clin. Microbiol. Rev., 1997, 10, p. 742-780.
Go to original source...
Go to PubMed...
- Hotchkiss, R. S., Osmon, S. B., Chang, K. C. et al. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J. Immunol., 2005, 174, p. 5110-5118.
Go to original source...
Go to PubMed...
- Felmet, K. A., Hall, M. W., Clark, R. S. et al. Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J. Immunol., 2005, 174, p. 3765-3772.
Go to original source...
Go to PubMed...
- Kasten, K. R., Tschop, J., Adediran, S. G. et al. T cells are potent early mediators of the host response to sepsis. Shock, 2010, 34, p. 327-336.
Go to original source...
Go to PubMed...
- Swan, R., Chung, C. S., Albina, J. et al. Polymicrobial sepsis enhances clearance of apoptotic immune cells by splenic macrophages. Surgery, 2007, 142, p. 253-261.
Go to original source...
Go to PubMed...
- Pachot, A., Monneret, G., Voirin, N. et al. Longitudinal study of cytokine and immune transcription factor mRNA expression in septic shock. Clin. Immunol., 2005, 114, p. 61-69.
Go to original source...
Go to PubMed...
- Korn, T., Bettelli, E., Oukka, M. et al. IL-17 and Th17 Cells. Annu. Rev. Immunol., 2009, 27, p. 485-517.
Go to original source...
Go to PubMed...
- Zhu, J., Paul, W. E. Heterogeneity and plasticity of T helper cells. Cell Res., 2010, 20, p. 4-12.
Go to original source...
Go to PubMed...
- Sakaguchi, S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol., 2004, 22, p. 531-562.
Go to original source...
Go to PubMed...
- Feuerer, M., Shen, Y., Littman, D. R. et al. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity, 2009, 31, p. 654-664.
Go to original source...
Go to PubMed...
- Sitkovsky, M. V. T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol., 2009, 30, p. 102-108.
Go to original source...
Go to PubMed...
- Souza-Fonseca-Guimaraes, F., Dib-Conquy, M., Cavaillon, J. M.Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol. Med., 2012, 18, p. 270-285.
Go to original source...
Go to PubMed...
- Vivier, E., Raulet, D. H., Moretta, A. et al. Innate or adaptive immunity? The example of natural killer cells. Science, 2011, 331, p. 44-49.
Go to original source...
Go to PubMed...
- Forel, J. M., Chiche, L., Thomas, G. et al. Phenotype and functions of natural killer cells in critically-ill septic patients. PLoS. One., 2012, 7, p. e50446.
Go to original source...
Go to PubMed...
- Boomer, J. S., Shuherk-Shaffer, J., Hotchkiss, R. S. et al.A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit. Care, 2012, 16, p. R112.
Go to original source...
Go to PubMed...
- McDunn, J. E., Hotchkiss, R. S. Leukocyte phenotyping to stratify septic shock patients. Crit Care, 2009, 13, p. 127.
Go to original source...
Go to PubMed...
- Gregoire, C., Chasson, L., Luci, C. et al. The trafficking of natural killer cells. Immunol. Rev., 2007, 220, p. 169-182.
Go to original source...
Go to PubMed...
- Etogo, A. O., Nunez, J., Lin, C. Y. et al. NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicrobial intra-abdominal sepsis. J. Immunol., 2008, 180, p. 6334-6345.
Go to original source...
Go to PubMed...
- Herzig, D. S., Driver, B. R., Fang, G. et al. Regulation of lymphocyte trafficking by CXC chemokine receptor 3 during septic shock. Am. J. Respir. Crit. Care Med., 2012, 185, p. 291-300.
Go to original source...
Go to PubMed...
- Monserrat, J., de, P. R., Reyes, E. et al. Clinical relevance of the severe abnormalities of the T cell compartment in septic shock patients. Crit Care, 2009, 13, p. R26.
Go to original source...
Go to PubMed...
- Andaluz-Ojeda, D., Iglesias, V., Bobillo, F. et al. Early natural killer cell counts in blood predict mortality in severe sepsis. Crit. Care, 2011, 15, p. R243.
Go to original source...
Go to PubMed...
- de Pablo, R., Monserrat, J., Torrijos, C. et al. The predictive role of early activation of natural killer cells in septic shock. Crit Care, 2012, 16, p. 413.
Go to original source...
Go to PubMed...
- Roark, C. L., French, J. D., Taylor, M. A. et al. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J. Immunol., 2007, 179, p. 5576-5583.
Go to original source...
Go to PubMed...
- Han, G., Geng, S., Li, Y. et al. gammadeltaT-cell function in sepsis is modulated by C5a receptor signalling. Immunology, 2011, 133, p. 340-349.
Go to original source...
Go to PubMed...
- Cheng, L., Cui, Y., Shao, H. et al. Mouse gammadelta T cells are capable of expressing MHC class II molecules, and of functioning as antigen-presenting cells. J. Neuroimmunol., 2008, 203, p. 3-11.
Go to original source...
Go to PubMed...
- Sinha, P., Clements, V. K., Bunt, S. K. et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J. Immunol., 2007, 179, p. 977-983.
Go to original source...
Go to PubMed...
- Gabrilovich, D. I., Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9, p. 162-174.
Go to original source...
Go to PubMed...
- Ochoa, A. C., Zea, A. H., Hernandez, C. et al. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res., 2007, 13, p. 721s-726s.
Go to original source...
Go to PubMed...
- Cuenca, A. G., Moldawer, L. L. Myeloid-derived suppressor cells in sepsis: friend or foe? Intensive Care Med., 2012, 38, p. 928-930.
Go to original source...
Go to PubMed...
- Brudecki, L., Ferguson, D. A., McCall, C. E. et al. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect. Immun., 2012, 80, p. 2026-2034.
Go to original source...
Go to PubMed...
- Derive, M., Bouazza, Y., Alauzet, C. et al. Myeloid-derived suppressor cells control microbial sepsis. Intensive Care Med., 2012, 38, p. 1040-1049.
Go to original source...
Go to PubMed...
- Sansonetti, P. J. The innate signaling of dangers and the dangers of innate signaling. Nat. Immunol., 2006, 7, p. 1237-1242.
Go to original source...
Go to PubMed...
- Monneret, G., Venet, F., Pachot, A. et al. Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony. Mol. Med., 2008, 14, p. 64-78.
Go to original source...
Go to PubMed...
- Carrette, F., Surh, C. D. IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin. Immunol., 2012, 24, p. 209-217.
Go to original source...
Go to PubMed...
- Kasten, K. R., Tschop, J., Goetzman, H. S. et al. T-cell activation differentially mediates the host response to sepsis. Shock, 2010, 34, p. 377-383.
Go to original source...
Go to PubMed...
- Rendon, J. L., Choudhry, M. A. Th17 cells: critical mediators of host responses to burn injury and sepsis. J. Leukoc. Biol., 2012, 92, p. 529-538.
Go to original source...
Go to PubMed...
- Iwakura, Y., Ishigame, H., Saijo, S. et al. Functional specialization of interleukin-17 family members. Immunity, 2011, 34, p. 149-162.
Go to original source...
Go to PubMed...
- Nakada, T. A., Russell, J. A., Boyd, J. H. et al. IL17A genetic variation is associated with altered susceptibility to Gram-positive infection and mortality of severe sepsis. Crit. Care, 2011, 15, p. R254.
Go to original source...
Go to PubMed...
- Oboki, K., Ohno, T., Kajiwara, N. et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl. Acad. Sci. U. S. A, 2010, 107, p. 18581-18586.
Go to original source...
Go to PubMed...
- ves-Filho, J. C., Sonego, F., Souto, F. O. et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med., 2010, 16, p. 708-712.
Go to original source...
Go to PubMed...
- Mirchandani, A. S., Salmond, R. J., Liew, F. Y. Interleukin-33 and the function of innate lymphoid cells. Trends Immunol., 2012, 33, p. 389-396.
Go to original source...
Go to PubMed...
- Bianchi, M. E., Manfredi, A. A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev., 2007, 220, p. 35-46.
Go to original source...
Go to PubMed...
- Sunden-Cullberg, J., Norrby-Teglund, A., Rouhiainen, A. et al. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med., 2005, 33, p. 564-573.
Go to original source...
Go to PubMed...
- Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol., 2007, 81, p. 1-5.
Go to original source...
Go to PubMed...
- Hotchkiss, R. S. Immunotherapy for Sepsis - A New Approach against an Ancient Foe. N. Engl. J. Med., 2010, 363, p. 87-89
Go to original source...
Go to PubMed...